220 research outputs found

    The Adaptive Significance of Natural Genetic Variation in the DNA Damage Response of Drosophila melanogaster.

    Get PDF
    Despite decades of work, our understanding of the distribution of fitness effects of segregating genetic variants in natural populations remains largely incomplete. One form of selection that can maintain genetic variation is spatially varying selection, such as that leading to latitudinal clines. While the introduction of population genomic approaches to understanding spatially varying selection has generated much excitement, little successful effort has been devoted to moving beyond genome scans for selection to experimental analysis of the relevant biology and the development of experimentally motivated hypotheses regarding the agents of selection; it remains an interesting question as to whether the vast majority of population genomic work will lead to satisfying biological insights. Here, motivated by population genomic results, we investigate how spatially varying selection in the genetic model system, Drosophila melanogaster, has led to genetic differences between populations in several components of the DNA damage response. UVB incidence, which is negatively correlated with latitude, is an important agent of DNA damage. We show that sensitivity of early embryos to UVB exposure is strongly correlated with latitude such that low latitude populations show much lower sensitivity to UVB. We then show that lines with lower embryo UVB sensitivity also exhibit increased capacity for repair of damaged sperm DNA by the oocyte. A comparison of the early embryo transcriptome in high and low latitude embryos provides evidence that one mechanism of adaptive DNA repair differences between populations is the greater abundance of DNA repair transcripts in the eggs of low latitude females. Finally, we use population genomic comparisons of high and low latitude samples to reveal evidence that multiple components of the DNA damage response and both coding and non-coding variation likely contribute to adaptive differences in DNA repair between populations

    Evidence that natural selection maintains genetic variation for sleep in Drosophila melanogaster.

    Get PDF
    BackgroundDrosophila melanogaster often shows correlations between latitude and phenotypic or genetic variation on different continents, which suggests local adaptation with respect to a heterogeneous environment. Previous phenotypic analyses of latitudinal clines have investigated mainly physiological, morphological, or life-history traits. Here, we studied latitudinal variation in sleep in D. melanogaster populations from North and Central America. In parallel, we used RNA-seq to identify interpopulation gene expression differences.ResultsWe found that in D. melanogaster the average nighttime sleep bout duration exhibits a latitudinal cline such that sleep bouts of equatorial populations are roughly twice as long as those of temperate populations. Interestingly, this pattern of latitudinal variation is not observed for any daytime measure of activity or sleep. We also found evidence for geographic variation for sunrise anticipation. Our RNA-seq experiment carried out on heads from a low and high latitude population identified a large number of gene expression differences, most of which were time dependent. Differentially expressed genes were enriched in circadian regulated genes and enriched in genes potentially under spatially varying selection.ConclusionOur results are consistent with a mechanistic and selective decoupling of nighttime and daytime activity. Furthermore, the present study suggests that natural selection plays a major role in generating transcriptomic variation associated with circadian behaviors. Finally, we identified genomic variants plausibly causally associated with the observed behavioral and transcriptomic variation

    Population genomic analysis of base composition evolution in Drosophila melanogaster.

    Get PDF
    The relative importance of mutation, selection, and biased gene conversion to patterns of base composition variation in Drosophila melanogaster, and to a lesser extent, D. simulans, has been investigated for many years. However, genomic data from sufficiently large samples to thoroughly characterize patterns of base composition polymorphism within species have been lacking. Here, we report a genome-wide analysis of coding and noncoding polymorphism in a large sample of inbred D. melanogaster strains from Raleigh, North Carolina. Consistent with previous results, we observed that AT mutations fix more frequently than GC mutations in D. melanogaster. Contrary to predictions of previous models of codon usage in D. melanogaster, we found that synonymous sites segregating for derived AT polymorphisms were less skewed toward low frequencies compared with sites segregating a derived GC polymorphism. However, no such pattern was observed for comparable base composition polymorphisms in noncoding DNA. These results suggest that AT-ending codons could currently be favored by natural selection in the D. melanogaster lineage

    Rampant Adaptive Evolution in Regions of Proteins with Unknown Function in Drosophila simulans

    Get PDF
    Adaptive protein evolution is pervasive in Drosophila. Genomic studies, thus far, have analyzed each protein as a single entity. However, the targets of adaptive events may be localized to particular parts of proteins, such as protein domains or regions involved in protein folding. We compared the population genetic mechanisms driving sequence polymorphism and divergence in defined protein domains and non-domain regions. Interestingly, we find that non-domain regions of proteins are more frequent targets of directional selection. Protein domains are also evolving under directional selection, but appear to be under stronger purifying selection than non-domain regions. Non-domain regions of proteins clearly play a major role in adaptive protein evolution on a genomic scale and merit future investigations of their functional properties

    Genome of Drosophila suzukii, the spotted wing drosophila.

    Get PDF
    Drosophila suzukii Matsumura (spotted wing drosophila) has recently become a serious pest of a wide variety of fruit crops in the United States as well as in Europe, leading to substantial yearly crop losses. To enable basic and applied research of this important pest, we sequenced the D. suzukii genome to obtain a high-quality reference sequence. Here, we discuss the basic properties of the genome and transcriptome and describe patterns of genome evolution in D. suzukii and its close relatives. Our analyses and genome annotations are presented in a web portal, SpottedWingFlyBase, to facilitate public access

    Adaptive Gene Expression Divergence Inferred from Population Genomics

    Get PDF
    Detailed studies of individual genes have shown that gene expression divergence often results from adaptive evolution of regulatory sequence. Genome-wide analyses, however, have yet to unite patterns of gene expression with polymorphism and divergence to infer population genetic mechanisms underlying expression evolution. Here, we combined genomic expression data—analyzed in a phylogenetic context—with whole genome light-shotgun sequence data from six Drosophila simulans lines and reference sequences from D. melanogaster and D. yakuba. These data allowed us to use molecular population genetics to test for neutral versus adaptive gene expression divergence on a genomic scale. We identified recent and recurrent adaptive evolution along the D. simulans lineage by contrasting sequence polymorphism within D. simulans to divergence from D. melanogaster and D. yakuba. Genes that evolved higher levels of expression in D. simulans have experienced adaptive evolution of the associated 3′ flanking and amino acid sequence. Concomitantly, these genes are also decelerating in their rates of protein evolution, which is in agreement with the finding that highly expressed genes evolve slowly. Interestingly, adaptive evolution in 5′ cis-regulatory regions did not correspond strongly with expression evolution. Our results provide a genomic view of the intimate link between selection acting on a phenotype and associated genic evolution

    Wolbachia do not live by reproductive manipulation alone: infection polymorphism in Drosophila suzukii and D. subpulchrella

    Get PDF
    This is the peer reviewed version of the following article: Hamm, C. A., Begun, D. J., Vo, A., Smith, C. C. R., Saelao, P., Shaver, A. O., Jaenike, J. and Turelli, M. (2014), Wolbachia do not live by reproductive manipulation alone: infection polymorphism in Drosophila suzukii and D. subpulchrella. Mol Ecol, 23: 4871–4885. doi:10.1111/mec.12901, which has been published in final form at http://doi.org/10.1111/mec.12901. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.Drosophila suzukii recently invaded North America and Europe. Populations in Hawaii, California, New York and Nova Scotia are polymorphic for Wolbachia, typically with <20% infection frequency. The Wolbachia in D. suzukii, denoted wSuz, is closely related to wRi, the variant prevalent in continental populations of D. simulans. wSuz is also nearly identical to Wolbachia found in D. subpulchrella, plausibly D. suzukii's sister species. This suggests vertical Wolbachia transmission through cladogenesis (“cladogenic transmission”). The widespread occurrence of 7-20% infection frequencies indicates a stable polymorphism. wSuz is imperfectly maternally transmitted, with wild infected females producing on average 5-10% uninfected progeny. As expected from its low frequency, wSuz produces no cytoplasmic incompatibility (CI), i.e., no elevated embryo mortality when infected males mate with uninfected females, and no appreciable sex-ratio distortion. The persistence of wSuz despite imperfect maternal transmission suggests positive fitness effects. Assuming a balance between selection and imperfect transmission, we expect a fitness advantage on the order of 20%. Unexpectedly, Wolbachia-infected females produce fewer progeny than do uninfected females. We do not yet understand the maintenance of wSuz in D. suzukii. The absence of detectable CI in D. suzukii and D. subpulchrella makes it unlikely that CI-based mechanisms could be used to control this species without transinfection using novel Wolbachia. Contrary to their reputation as horizontally transmitted reproductive parasites, many Wolbachia infections are acquired through introgression or cladogenesis and many cause no appreciable reproductive manipulation. Such infections, likely to be mutualistic, may be central to understanding the pervasiveness of Wolbachia among arthropods
    • …
    corecore